Dynamic Arrays: ArrayLists and Vector

ArrayList is an array like structure, that can be dynamically resized. The ArrayList class defines many instance methods. We will describe some of the most useful. Suppose that list is a variable of type ArrayList. Then we have:

· list.size() -- This function returns the current size of the ArrayList. The only valid positions in the list are numbers in the range 0 to list.size()-1. Note that the size can be zero. A call to the default constructor new ArrayList() creates an ArrayList of size zero.

· list.add(obj) -- Adds an object onto the end of the list, increasing the size by 1. The parameter, obj, can refer to an object of any type, or it can be null.

· list.get(N) -- This function returns the value stored at position N in the ArrayList. N must be an integer in the range 0 to list.size()-1. If N is outside this range, an error of type IndexOutOfBoundsException occurs. Calling this function is similar to referring to A[N] for an array, A, except that you can't use list.get(N) on the left side of an assignment statement.

· list.set(N, obj) -- Assigns the object, obj, to position N in the ArrayList, replacing the item previously stored at position N. The integer N must be in the range from 0 to list.size()-1. A call to this function is equivalent to the command A[N] = obj for an array A.

· list.remove(obj) -- If the specified object occurs somewhere in the ArrayList, it is removed from the list. Any items in the list that come after the removed item are moved down one position. The size of the ArrayList decreases by 1. If obj occurs more than once in the list, only the first copy is removed.

· list.remove(N) -- For an integer, N, this removes the N-th item in the ArrayList. N must be in the range 0 to list.size()-1. Any items in the list that come after the removed item are moved down one position. The size of the ArrayList decreases by 1.

· list.indexOf(obj) -- A function that searches for the object, obj, in the ArrayList. If the object is found in the list, then the position number where it is found is returned. If the object is not found, then -1 is returned.

For example, suppose again that players in a game are represented by objects of type Player. The players currently in the game could be stored in an ArrayList named players. This variable would be declared as

ArrayList players;

and initialized to refer to a new, empty ArrayList object with

players = new ArrayList();

If newPlayer is a variable that refers to a Player object, the new player would be added to the ArrayList and to the game by saying

players.add(newPlayer);

and if player number i leaves the game, it is only necessary to say

players.remove(i);

Or, if player is a variable that refers to the Player that is to be removed, you could say

players.remove(player);

All this works very nicely. The only slight difficulty arises when you use the function players.get(i) to get the value stored at position i in the ArrayList. The return type of this function is Object. In this case the object that is returned by the function is actually of type Player. In order to do anything useful with the returned value, it's usually necessary to type-cast it to type Player:

Player plr = (Player)players.get(i);

For example, if the Player class includes an instance method makeMove() that is called to allow a player to make a move in the game, then the code for letting every player make a move is

for (int i = 0; i < players.size(); i++) {

 Player plr = (Player)players.get(i);

 plr.makeMove();

}

The two lines inside the for loop can be combined to a single line:

((Player)players.get(i)).makeMove();

This gets an item from the list, type-casts it, and then calls the makeMove() method on the resulting Player. The parentheses around "(Player)players.get(i)" are required because of Java's precedence rules. The parentheses force the type-cast to be performed before the makeMove() method is called.

Parameterized Types

In previous examples ArrayList used the type Object as the basic type for objects that are stored in a list. This has at least two unfortunate consequences: First, it makes it necessary to use type-casting in almost every case when an element is retrieved from that list. Second, since any type of object can legally be added to the list, there is no way for the compiler to detect an attempt to add the wrong type of object to the list; the error will be detected only at run time when the object is retrieved from the list and the attempt to type-cast the object fails. Compare this to arrays. An array of type BaseType[] can only hold objects of type BaseType. An attempt to store an object of the wrong type in the array will be detected by the compiler, and there is no need to type-cast items that are retrieved from the array back to type BaseType.

To address this problem, Java 5.0 introduced parameterized types. ArrayList is an example: Instead of using the plain "ArrayList" type, it is possible to use ArrayList<BaseType>, where BaseType is any object type, that is, the name of a class. (BaseType cannot be one of the primitive types.) ArrayList<BaseType> can be used to create lists that can hold only objects of type BaseType. For example,

ArrayList<ColoredRect> rects;

declares a variable named rects of type ArrayList<ColoredRect>, and

rects = new ArrayList<ColoredRect>();

sets rects to refer to a newly created list that can only hold objects belonging to the class ColoredRect (or to a subclass). The funny-looking name "ArrayList<ColoredRect>" is being used here in exactly the same way as an ordinary class name -- don't let the "<ColoredRect>" confuse you; it's just part of the name of the type. When a statement such as rects.add(x); occurs in the program, the compiler can check whether x is in fact of type ColoredRect. If not, the compiler will report a syntax error. When an object is retrieved from the list, the compiler knows that the object must be of type ColoredRect, so no type-cast is necessary. You can say simply:

ColoredRect rect = rects.get(i)

You can even refer directly to an instance variable in the object, such as rects.get(i).color. This makes using ArrayList<ColoredRect> very similar to using ColoredRect[] with the added advantage that the list can grow to any size. Note that if a for-each loop is used to process the items in rects, the type of the loop control variable can be ColoredRect, and no type-cast is necessary. For example, when using ArrayList<ColoredRect> as the type for the list rects, the code for drawing all the rectangles in the list could be rewritten as:

for (int i = 0; i < rects.size(); i++) {

 ColoredRect rect = rects.get(i)

 Ssytem.out.println(rect.color);

}

 Another example is

ArrayList<Player> players = new ArrayList<Player>();

Player p1 = new Player(“tom”);

players.add(p1);

players.add(new Player(“Bob”);

 …..
for (int i = 0; i < players.size(); i++) {

 players.get(i).makeMove();

}

The only drawback to using parameterized types is that the base type cannot be a primitive type. For example, there is no such thing as "ArrayList<int>". However, this is not such a big drawback as it might seem at first, because of the "wrapper types" and "autoboxing". A wrapper type such as Double or Integer can be used as a base type for a parameterized type. An object of type ArrayList<Double> can hold objects of type Double. Since each object of type Double holds a value of type double, it's almost like having a list of doubles. If numlist is declared to be of type ArrayList<Double> and if x is of type double, then the value of x can be added to the list by saying:

numlist.add(new Double(x));

Furthermore, because of autoboxing, the compiler will automatically do double-to-Double and Double-to-double type conversions when necessary. This means that the compiler will treat "numlist.add(x)" as begin equivalent to "numlist.add(new Double(x))". So, behind the scenes, "numlist.add(x)" is actually adding an object to the list, but it looks a lot as if you are working with a list of doubles.

