Dynamic Arrays: ArrayLists

ArrayList is an array like structure, which can be dynamically resized.
ArrayList<String> players = new ArrayList<String>();

players.add("tom");

players.add("Bob");

String kim = "Kimberly";

players.add(kim);

 …..

for (int i = 0; i < players.size(); i++) {

 Sytem.out.println(players.get(i));

}

The ArrayList class defines many methods. We will describe some of the most useful. Suppose that list is a variable of type ArrayList.
ArrayList<String> list = new ArrayList<String>();

Then we have:

· list.size() -- This function returns the current size of the ArrayList. The only valid positions in the list are numbers in the range 0 to list.size()-1. Note that the size can be zero. Statement new ArrayList() creates an ArrayList of size zero.

· list.add(obj) -- Adds an object onto the end of the list, increasing the size by 1. The parameter, obj, can refer to an object of any type, or it can be null.

· list.get(N) -- This function returns the value stored at position N in the ArrayList. N must be an integer in the range 0 to list.size()-1. If N is outside this range, an error of type IndexOutOfBoundsException occurs. Calling this function is similar to referring to A[N] for an array, A, except that you can't use list.get(N) on the left side of an assignment statement.

· list.set(N, obj) -- Assigns the object, obj, to position N in the ArrayList, replacing the item previously stored at position N. The integer N must be in the range from 0 to list.size()-1. A call to this function is equivalent to the command A[N] = obj for an array A.

· list.remove(obj) -- If the specified object occurs somewhere in the ArrayList, it is removed from the list. Any items in the list that come after the removed item are moved down one position. The size of the ArrayList decreases by 1. If obj occurs more than once in the list, only the first copy is removed.

· list.remove(N) -- For an integer, N, this removes the N-th item in the ArrayList. N must be in the range 0 to list.size()-1. Any items in the list that come after the removed item are moved down one position. The size of the ArrayList decreases by 1.

· list.indexOf(obj) -- A function that searches for the object, obj, in the ArrayList. If the object is found in the list, then the position number where it is found is returned. If the object is not found, then -1 is returned.

The only drawback to using ArrayList is that the base type cannot be a primitive type. For example, there is no such thing as "ArrayList<int>". However, this is not such a big drawback as it might seem at first, because of the "wrapper types" and "autoboxing". A wrapper type such as Double or Integer can be used as a base type for a parameterized type. An object of type ArrayList<Double> can hold objects of type Double. Since each object of type Double holds a value of type double, it's almost like having a list of doubles. If numlist is declared to be of type ArrayList<Double> and if x is of type double, then the value of x can be added to the list by saying:

numlist.add(3.75);

Some collection methods that could be applied to array lists:

Collections.sort(numlist);
Collections.reverse(yourArrayList);

Collections.shuffle(yourArrayList);

