Reverse an array

This version of reverse uses two subscripts: one that starts at the left (beginning) of the array, and one that starts at the right (end) of the array. You can also use a for loop that goes to the middle of the array.

//=== reverse

 int[] b= new int[20];
 // some code to populate the array with the values

 //.
 int left = 0; // index of leftmost element

 int right = b.length-1; // index of rightmost element

 while (left < right) {

 // exchange the left and right elements

 int temp = b[left];

 b[left] = b[right];

 b[right] = temp;

 // move the bounds toward the center

 left++;

 right--;

 }

A for loop to do this would replace the above 8 statements with these. Both loops are the same speed, so the choice should be for the one which is more readable to you.

int len = b.length;

for (int i=0; i<=len/2; i++) {

 // exchange the first and last
 int temp = b[i];
 b[i] = b[len-1-i]; // len-1 is the last index.

 b[len-1-i] = temp;

}
Maximum value
To find the maximum value in an array:

1. Assign the first (or any) array element to the variable that will hold the maximum value.

2. Loop through the remaining array elements, starting at the second element (subscript 1). When a larger value is found, that becomes the new maximum.

//=== max

 int[] t={12,2,13,5,0,-3,44, };

 int maximum = t[0]; // start with the first value

 for (int i=1; i<t.length; i++) {

 if (t[i] > maximum) {

 maximum = t[i]; // new maximum

 }

 }

 System.out.print(maximum);

To make this work with object types (eg String), you will have to change the type declarations of course, but you will also have to change the comparison to use .compareTo(), which must be defined for that object type.

The minimum can be found by the same algorithm, simply inverting the test. It's also easy to add a test for the minimum to this loop so that both the maximum and minimum are determined within the same loop.

There is one common variation on this -- sometimes it isn't the maximum value that is desired, but the index of the maximum value (eg, so it can be changed).

Common errors:
Non-full arrays - need additional parameter

Error will happened when your arrays may not be full.
Error possibility - no elements

A minor problem with this algorithm is what to do if there are absolutely no elements in the array -- t.length is zero. There is no maximum value.

Exceptions. This will produce an error, ArrayIndexOutOfBounds, when we try to get that first element. One solution is to allow this exception to be thrown, which is easiest because it requires no programming. Another would be to throw IllegalArgumentException with a more meaningful message. This would be more useful if you expected this error to occur very often, but probably isn't worth the effort. Zero-length arrays are usually produced as the result so an error earlier in the code, and they are encountered occasionally in the process of debugging.

Loop backwards?

Very rarely will you find a programmer who prefers to write loops that go from high to low. Of course it makes no difference in this algorithm, however, there are machines in which that can save a few nanoseconds. Backwards loops are harder to read so it's generally considered antisocial to write them without a good reason.

Collections max method

If you have an array of objects (not primitives), you can use the Collections.max(...) method after making the array look like a List. For example,

import java.util.*; // or import java.util.Collections;

.
 String[] names = . . .;

 . . .

 String highest = Collections.max(Arrays.asList(names));

Sort method

You can write your own sorting program, but good sorts are available in the Java library in the java.util.Arrays.sort(...) and java.util.Collections.sort(...) methods.

import java.util.*; // or import java.util.Arrays;

.
 int[] numbers = . . .;

 . . .

 Arrays.sort(numbers);

Mean - average

Computing the arithmetic average (mean) can be done in one pass over all the array elements.

//=== mean

 double[] p= new double[100];
 // this is the code to populate the array with values

 //

 double sum = 0; // sum of all the elements

 for (int i=0; i<p.length; i++) {

 sum += p[i];

 }

 System.out.println(sum / p.length);

Question: What will this method do if it is passed an array with no elements in it, ie p.length == 0 ?

Fill an array with random values

Puts a random integer into each element in the array. Math.random() returns a double in the range 0.0-1.0, therefore we have to change the range, and cast to int.

//=== fillRandom

 // let’s assume that you already have

 //int[] a - array of integers

 // int min - min value for the random numbers

 // int max - maximum value for the random numbers

 int range = max-min;

 for (int i=0; i < a.length; i++) {

 a[i] = (int)(Math.random()*range)+ min;

 }

Median

This method computes the median (middle) value of an array. The array must be sorted before calling this method. It returns the middle element, or the average of the two middle elements if there are an even number of elements. Actually, the entire array doesn't need to be sorted, only up to and including the middle element(s).

//== median

double[] m=. . . . ;

// Precondition: Array must be sorted

 int middle = m.length/2; // subscript of middle element

 if (m.length%2 == 1) {

 // Odd number of elements -- return the middle one.

 System.out.print(m[middle]);

 } else {

 // Even number -- return average of middle two

 // Must cast the numbers to double before dividing.

 System.out.print((m[middle-1] + m[middle]) / 2.0);

 }

Question: Does it matter if the array is sorted in ascending or descending order?
Reading into an array

import java.util.*;

public class InputArray {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

int[] scores = new int[100];

int n = 0; // Current number of values in scores.

while (in.hasNextInt()) {

if (n >= scores.length) {

System.err.println("Too much data!");

break;

}

scores[n] = in.nextInt();

n++;

}

//... Now do something with the scores!

}

}

