Class vs. Instance methods/variables
This handout was created by Wayne Loo – teacher at Northview Heights SS.

Class or Static methods/variables can be used in OOP.

They have the effect of having only one version of itself, no matter how many objects are created.
In the UML they are represented with an underline.

[image: image1]
Java Code:
Student.maxMark = 100;

Student.minMark = 0;

Student student1 = new Student("john");
student1.setMarks(50,70);

Student student2 = new Student("tom");
Student2.setMarks(80,75);

System.out.println(“average is ” + Student.calcAverage(student1.getMark1(), student1.getMark2()));
System.out.println(“average is ” + Student.calcAverage(student2.getMark1(), student2.getMark2()));
Overloading
When you have more than one CONSTRUCTOR or METHOD with the same name but with different input (parameters), it is called “Overloaded Constructor” or “Overloaded method”.

	Overloaded Method
	Overloaded Constructor

	//filename: MathSum.java

//The " MathSum " class.

public class MathSum

{

 public int sum(int x, int y, int z){

 System.out.println(“sum method ver1”);

 return x+y+z;

 }

 public int sum(int x, int y){

 System.out.println(“sum method ver2”);

 return x+y;

 }

 public double sum(double x, double y){

 System.out.println(“sum method ver3”);

 return x+y;

 }

 public double sum(double x, double y, double z){

 System.out.println(“sum method ver4”);

 return x+y+z;

 }

} // MathSum class

//filename: Sample.java

// The "Sample" class.

public class Sample

{

 public static void main (String[] args)

 {

 MathSum ops = new MathSum ();

 System.out.println(ops.sum(1.12, 2.5, 3.9));

 System.out.println(ops.sum(4, 1));

 System.out.println(ops.sum(9, 4, 3));

 System.out.println(ops.sum(5.5, 2.11));

 } // main method

} // Sample class
	//filename: Student.java

//The "Student" class.

public class Student

{

 private String name;

 private int mark1;

 private int mark2;

 private double average;

 public Student(){

 name = “”;

 mark1 = 0;

 mark2 = 0;

 average = 0.0;

 }

 public Student(String n){

 name = n;

 mark1 = 0;

 mark2 = 0;

 average = 0.0;

 }

 public Student(String n, int x, int y){

 name = n;

 mark1 = x;

 mark2 = y;

 average = (mark1 + mark2)/2;

 }

} // Student class

//filename: Sample.java

// The "Sample" class.

public class Sample

{

 public static void main (String[] args)

 {

 Student s1 = new Student ();

 Student s2 = new Student (“Tim”);

 Student s3 = new Student (“Vic”, 60, 70);

 } // main method

} // Sample class

toString()
· There is a default method inserted into every object you create called toString()

· This method is automatically created for the purposes of outputting the object as a String;
used by System.out.println() method
Unfortunately, it usually outputs gibberish (representing some sort of address location of the object).

	Java Code
	Output Window

	public class Student{

 private String name;

 private int mark1;

 private int mark2;

 private double average;

 public Student(String n, int x, int y){

 name = n;

 mark1 = x;

 mark2 = y;

 average = (mark1 + mark2)/2;

 }

} // Student class

public class Sample{

 public static void main (String[] args){

 Student s9 = new Student ("Tommy", 48, 10);

 Student s3 = new Student ("Vic", 60, 70);

 System.out.println(s9);

 System.out.println(s3);
 } // main method

} // Sample class
	Student@15d56d5

Student@efd552

Customize toString() method
We can customize the toString() method to our liking by simply creating our own version of the toString() method in our class. All we need to do is create the following method definition:

public String toString() {

return <..whatever we want..>
}
	Java Code
	Output Window

	public class Student{

 private String name;

 private int mark1;

 private int mark2;

 private double average;

 public Student(String n, int x, int y){

 name = n;

 mark1 = x;

 mark2 = y;

 average = (mark1 + mark2)/2;

 }

 public String toString(){

 return "The Student object name is = " + name;

 }
} // Student class

public class Sample{

 public static void main (String[] args){

 Student s9 = new Student ("Tommy", 48, 10);

 Student s3 = new Student ("Vic", 60, 70);

 System.out.println(s9);

 System.out.println(s3);
 } // main method

} // Sample class
	The Student object name is = Tommy

The Student object name is = Vic

name = john

mark1 = 50

mark2 = 70

�

plus + Behaviours/Methods

name = tom

mark1 = 80

mark2 = 75

�

plus + Behaviours/Methods

student2 OBJECT

Student

-name: String

-mark1: int

-mark2: int

+maxMark: int

+minMark: int

Student(n: String)

+setMarks(x : int, y : int) : void

+getMark1(): int

+getMark2(): int

+calcAverage(m1: int, m2:int) : double

+message() : String

Student CLASS

Name of Class

Attributes / Variables

Behaviours / Methods

maxMark

minMark

calcAverage(m1, m2)

student1 OBJECT

Only 1 version

